Auxin and nitric oxide control indeterminate nodule formation
نویسندگان
چکیده
منابع مشابه
Acropetal Auxin Transport Inhibition Is Involved in Indeterminate But Not Determinate Nodule Formation
Legumes enter into a symbiotic relationship with nitrogen-fixing rhizobia, leading to nodule development. Two main types of nodules have been widely studied, indeterminate and determinate, which differ in the location of the first cell division in the root cortex, and persistency of the nodule meristem. Here, we compared the control of auxin transport, content, and response during the early sta...
متن کاملHydrogen Gas Is Involved in Auxin-Induced Lateral Root Formation by Modulating Nitric Oxide Synthesis
Metabolism of molecular hydrogen (H₂) in bacteria and algae has been widely studied, and it has attracted increasing attention in the context of animals and plants. However, the role of endogenous H₂ in lateral root (LR) formation is still unclear. Here, our results showed that H₂-induced lateral root formation is a universal event. Naphthalene-1-acetic acid (NAA; the auxin analog) was able to ...
متن کاملVascular nitric oxide: formation and function
Nitric oxide (NO) is a structurally simple, highly versatile molecule that was originally discovered over 30 years ago as an endothelium-derived relaxing factor. In addition to its vasorelaxing effects, NO is now recognized a key determinant of vascular health, exerting antiplatelet, antithrombotic, and anti-inflammatory properties within the vasculature. This short-lived molecule exerts its in...
متن کاملNitric oxide and the bioactivities
Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...
متن کاملNitric oxide and the bioactivities
Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Plant Biology
سال: 2007
ISSN: 1471-2229
DOI: 10.1186/1471-2229-7-21